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Abstract-A comprehensive and versatile analysis of the response of a helicopter rotor blade is
presented in this paper. First, the full nonlinear partial differential equations that govern the motion
of the blade, taking into account the geometrical nonlinearities that arise due to deformation, are
presented. The equilibrium solution exhibited by the system is then determined using a relatively
simple model for the aerodynamic forces, common in the rotorcraft dynamics literature. The
equilibrium solution is determined by numerical integration of a nonlinear two-point boundary
value problem. The blade's equilibrium is then perturbed and the stability of infinitesimally small
perturbations is analyzed in detail. The analysis presented here yields essentially exact results for
the equilibrium solution and for the eigenvalues and eigenfunctions associated with the infini­
tesimally small perturbations about the equilibrium. © 1997 Elsevier Science Ltd

INTRODUCTION

The investigation of the response of a rotor blade includes the determination ofa particular
solution to the differential equations of motion of the system and the analysis of the
perturbed motion about the particular solution. For the case of hover, the particular
solution is an equilibrium (i,e. constant in time) solution. For this case, the investigation
of the perturbed motion includes the determination of the eigenvalues associated with
infinitesimally small motions about the equilibrium solution (or solutions). Because of the
complexity of the governing differential equations of motion, it has been common practice
in the rotorcraft dynamics literature to first expand the full nonlinear differential equations,
to a pre-determined degree in a small parameter, about the undeformed state of the system,
The resulting differential equations, which contain polynomial nonlinearities truncated to
the desired order, are then used to analyze the aeroelastic response of the blade. Since the
undeformed state is not an equilibrium solution to the full nonlinear differential equations
of motion, one must be careful when using such expanded equations in order to obtain
results that are consistent with the approximating assumptions. As shown in Crespo da
Silva et al. (1991) for a cantilever with a tip mass, even a cubic approximation to such
equations may yield, in some cases, very inaccurate eigenvalues for the perturbed linearized
motion. As pointed out in that reference, the mathematically correct way to expand the full
nonlinear differential equations of motion is, of course, to always expand them about a
particular solution (such as an equilibrium solution) exhibited by such equations.

An analysis of the response of a rotor blade in hover was presented in Crespo da Silva
and Hodges (1986a, 1986b) by making use ofGalerkin's method with a set ofeigenfunctions
for a non-rotating beam. In such methodology, the number of Galerkin coefficients depends
on the number of eigenfunctions used and on the order of truncation of the expanded
differential equations of motion. As shown in the second of the references mentioned above,
such a number is greatly increased when one increases the truncation order of the expanded
equations from quadratic [see, for example Hodges and Dowell (1974), Hodges and Orm­
iston (1976)] to cubic.

In this paper, the problem of determining the equilibrium solution and the eigenvalues
associated with the perturbed, infinitesimally small, aeroelastic response of a helicopter
rotor blade in hover is analyzed in a mathematically exact manner. First, the equilibrium
state is determined directly by numerically solving the two-point boundary value problem

619



620 M. R. M. Crespo da Silva

Fig. I. A segment of a rotor blade.

associated with the original nonlinear differential equations of motion that govern the
blade's response. An approach based on the general form of the solution to linearized
differential equations of motion is then used for determining the eigenfunctions and the
eigenvalues associated with such perturbations, thus, eliminating the need to use approxi­
mate methods to do so.

NONLINEAR DIFFERENTIAL EQUATIONS OF MOTION

The differential equations governing the nonlinear flexural-flexural-torsional dynamics
of beams, taking into account the geometric nonlinearities in the system in a mathematically
consistent manner, were formulated in Crespo da Silva and Glynn (1978a) for inextensional
beams. That work was generalized to account for extensionality [e.g. Crespo da Silva
(1988)], and for the effects that arise from mounting the beam in a rotating base [e.g.
Crespo da Silva (1991)], as in the case of a helicopter rotor blade. The differential equations
generated from the formulation presented in Crespo da Silva (1991) are used here to
investigate the response, and its stability, of a helicopter rotor blade in hover by making
use of a rigorous analysis methodology that is applicable to all dynamical systems. The
results obtained are essentially exact.

The system considered here is a helicopter rotor. It consists of N > 2 initially straight
and untwisted identical helicopter rotor blades of undeformed length R, pre-cone angle f3
and collective pitch angle 80 , Both f3 and 80 are constants. Each blade is modeled as a beam,
which is cantilevered to the rotating rotor. The rotor is spinning with a constant angular
velocity n about a fixed direction in space and is attached to a helicopter in hover.

A blade segment, before and after deformation, is shown in Fig. 1 (the quantities with
a caret, such as x, f;, etc, are unit vectors). Point 0 in that figure is inertial since the
helicopter is in hover. The small offset between 0 and the blade's root, which exists in
practice, is neglected in this model. The unit vectors Xo and 20 shown in Fig. 1 are inertial,
and 2 is parallel to 20 if f3 = O. The unit vectors ~, f; and ( are parallel to the principal
directions of the blade's cross-section at M*, where M* is the location of the cross-section
reference point M after the blade undergoes elastic deformation. The blade's cross-section
is symmetric about the IJ axis and is shaped with an aerodynamic profile; it is assumed that
its area and mass centroids, and aerodynamic center, coincide at M*.

The blade is modeled as a modified Euler~Bernoulii beam for which shear effects are
neglected and the small effect of warping in the ~-direction (see Fig. 1) is taken into account
only in the calculation of the blade's torsional stiffness [see Crespo da Silva (1988) for
details]. The orientation of the cross-section triad (~, f;, ( = ~ x f;) relative to the rotating
triad (x,.9, 2 = x x.9) can be described with the three-axis rotation sequence
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Fig. 2. Orientation angles and the elastic displacements.
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8z• - 8y ,81 = 80 +8x shown in Fig. 2. The angle 8y used here is the negative of a similar angle
that appear in Crespo da Silva (1991); with this convention, a positive value for {)y

conveniently implies a positive value for the "flap deflection" w (which is the actual
deflection normalized by R). With this rotation sequence, the angles {)z and {)y are related
to the non-dimensional components u, v and w of the elastic deformation vector R
(ux+vy+wi) associated with the reference point M* as shown in eqn (I) below (see Fig.
2). The flap deflection wand the "lead-lag deflection" v are the components due to bending.
As shown in Figs 1 and 2, the blade's reference point M* leads the rotating reference axis
OM when v is positive and lags it otherwise.

v' = (I +eo)cos{)y sin{)z

w' = (1 +eo) sin {)y

1+u' = (1 +eo) cos {)y cos {)z. (1)

Here, primes denote partial differentiation with respect to the non-dimensional spatial
variable x = IOMI/R, which is distance along the rotating undeformed blade's reference
axis, normalized by R. Also, according to Fig. I and eqn (I), the quantity eo is equal to
eo = as/ox -1 = J (1 +U')2 +V'2 + W'2 - I ; eo is a very small quantity and it is equal to zero
for inextensional beams.

The components of the unit vector triads (~,~, () and (x,y, i) are related as

The elements Tij of the transformation matrix T are given below since they appear in
several equations in this paper. In the following expressions, 81 = {)o +8x •

[

COS {)y cos {)z

T = - sin {)z cos {)I - sin 8y cos {)z sin {)I

sin {)z sin {)j - sin {)y cos 8z cos 8]

cos {)y sin {)z

cos {)z cos {)j -sin {)y sin {)z sin {)I

- cos 8z sin 8] - sin {)y sin 8z cos 8 I

sin8v ]

cos {)y sin 8] .

cos {)y cos 8 I

(2)

The expression for the deformed blade's curvature vector C (normalized by I/R, and
including the torsion) and for the absolute (i.e. relative to inertial space) angular velocity
vector w of the blade's cross-section (normalized by n) are given below [see Crespo da
Silva (1991) for the details of the derivations]. Overdots denote partial differentiation with
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respect to normalized time r = Qt, where t denotes dimensional time, and ~ means "equal
to by definition".

C = (8', + V~ sin Vv){+ (V~ sin VI cos Vy- V;. cos VI)1j + (V~ cos VI cos Vy+ V; sin VI)e
6. ~ - -
= C~¢+C~'7+CJ

(J) = [8x + (8z +cos 13) sin V,. + sin 13 cos Vycos Vz ]{

+ [(8z +cos 13) sin VI cos Oy - By cos VI - (cos VI sin Vz + sin V1 sin Vycos OJ sin I3]1j

+ [(8z + cos 13) cos 01 cos Ov + 8,. sin 01 + (sin 01 sin Oz - cos 01 sin 0" cos OJ sin me
6. ~ , '
=w~¢+w~'7+w". (3)

The blade's elastic angle of twist cfJ(x, r), is found as

(4)

The differential equations of motion for the blade and a boundary condition equation,
are formulated following the approach presented in Crespo da Silva (1991,1988). For
simplicity, a homogeneous blade of constant distributed mass m kg m -I is considered.
The four normalized differential equations of motion involving the four non-dimensional
variables u, u, wand Vx are obtained as [e.g. Crespo da Silva (1991)]

G' 6. [A aoz + A av" +' ']' "+ 2 . 13 2' . 13 Q
l' = ezau' ey au' AU = U ucos - WSln -v- l'

6. [aOz aoy ]' . . 2 1 .
G~ = Aozaw' +Ao,aw' +AW' = w+2vsmf3-wsm 13+ 2(x+u)sm2f3-Qw

where!u = a-2vcosf3+w(sin 2f3)/2-(x+u) cos2f3-Qu, while Qu, Qt., Qw and Qo
x

are the
normalized generalized forces whose specific (i.e. per unit length) virtual work is
mQ2R2(Q)5u+Q,.bu+ Q,,/5w+Qo bOx). The expressions for Ae and Ae are [e.g. Crespo da

\ - : I

Silva (1991), with Oy replaced by -Oy in that reference].

+ [J~W~T13 +J~W~T23 + J,w, T33 J' + (j~w~ T]2 +J~W~T22 + J,W,T32 ) sin 13

Ao, = [D~C~cosOl-D,C,sinVIl'-[J~w~cosVI-J,w,sinOd'

+ {[D~ +eo(D~ + DJ]C~ cos Oy - [D~C~ sin 01 + D,C, cos OIl sin Oy}O~

-w~[J~w, cos Vj +'hw~ sin VI] - (}I [J~w~ sin VI + J,W, cos OIl (6)

The following boundary condition equation is obtained from the variational for­
mulation that yields eqn (5), where b WB is the contribution (if any) to such equation from
the virtual work of the nonpotential forces.
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In the above equation, H u and H v are given by

+ [D~ +eo(Dry + D,)]C~ tan Oy sin Oz + [Dry Cry sin 0, + D,C, cos OIl sin Oz}

I
H v = -1-- {[D,C, sinO] -DryCry cosO,] sinOy sinO,

+eo

623

(7)

In the above equations, Dry and D, are the blade's bending stiffnesses, and D~ is the
torsional stiffness, all normalized by mO,2R4

. The quantities lry, J, and J~ are the blade's
distributed mass moments of inertia, normalized by mR2

• The quantity .Ie that appears in
the first three of eqn (5) is equal to

.Ie = EAeo+ (Dry +D,)CZ /2
I +eo '

(9)

where EA is the blade's axial stiffness, normalized by mQ2R 2
•

By making use of eqn (9), the second and third of eqn (5) can be reduced to two
integro-differential forms with Gv and Gw as shown below.

A o_ IX
Gv = (I ) -0 0 +(tanOz) fu dx

+eo cos yCOS z I

A o IXGw = (sin Oz tan Oy)Gv+ (I )v 0 + (tan Oy cos Oz) fu dx
+eo cos y ,

(10)

The generalized forces that appear in the differential equations of motion are given in the
next section.

GENERALIZED AERODYNAMIC FORCES

In this paper, the aerodynamic forces and moments are modeled using the relatively
simple quasi-steady strip theory based on Greenberg's extension of Theodorsen's theory in
which only the ~ and' components of the velocity of point M* in the blade's reference axis
(see Fig. I) relative to the air are taken into account in the calculation of the aerodynamic
load, as done in Hodges and Ormiston (1976), and Peters (1975), for example. By taking
into account the induced airflow through the rotor blade assembly, whose absolute velocity
is equal to -QRvjzo (see Fig. 1), the velocity of point M* relative to the air is

VM*/air = QR{[u - v cos f3 + Vi sin f3]x+ [v+ (x+ u) cos f3 - w sin f3]y

+ [w+vsinf3+vjcosf3]z} ~ QR(vxx+vyy+vzz). (11)

According to the aerodynamic theory being used here, the specific aerodynamic force
Faero (normalized by mQ2R) and moment M aero (normalized by mQ2R2

) are given as [e.g.
Crespo da Silva and Hodges (I 986b) ; Peters (1975)]
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[ ( C) CdU C(. C')J ,}
- V~ v, - "2 w~ + 2n Vv, + 4: v, - 4: w~ ,

(12)

In the above equations, Cis the airfoil's chord normalized by R, CdO is the airfoil's
profile drag coefficient, y = 6nR2cPair/m which is called the Lock number for the blade)
where Pair is the air density, and V = v; +vf. The quantities v~ and v( are the ~ and'
components of the velocity VM*!air of M* relative to the air. They are related to V n v, and Vz

as shown in eqn (13) given below.

V~ = T2IVx+T22Vy+T23Vz

v, = T31 V, + T32 Vy+ T33Vz' (13)

The expressions for the normalized generalized forces Qu, Q,,, Qw and Qox are extracted
directly from the expression for the virtual work (<5 W)aero done by the aerodynamic forces
acting on the blade, which is equal to

where

(<5W)aero = I {F,<5u+Fy<5v+Fz<5w+ M aero [<58x+ (sin 8y)<58z ]} dx

~ <5Ws +I [Qu<5u+Q,.<5v+Qw<5w+Qo,<58xl dx

Fx = T21F~+T3IF(

F, = T22F~ + T32 F(

Fz = T23F~ + T33 F(

(14)

(15)

are the components of Faero in the .x, y and i-directions, respectively (see Fig. 1).
This gives the following expressions for the specific generalized forces that are needed

in eqn (5), and for <5Ws , which appears in the boundary condition equation, eqn (7). The
effect of the generalized gravitational forces are neglected when compared to the generalized
aerodynamic forces, as customarily done in the rotorcraft literature.

(16)
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To complete the formulation of the problem, we now need to have an expression to
determine the normalized velocity Vi ofthe induced airflow through the rotor blade assembly.
For this, a simple model is also used where Vj is approximated as a constant determined by
using momentum theory [e.g. Bramwell (1976); Peters (1975)] as Vi = JCT /2, with CT

being the normalized average rotor thrust coefficient given by (see Fig. I)

b

average ro.tor thrust 2n i2"i I 2 dCT = = (rnQ RF.ieio) d(Rx) T
nR 2PaIT(QR)2 nR 2PaAQR)2 0 0 ~

(17)

where b is the number of blades in the rotor system.
To evaluate the above integral, the same approximation used in Peters (1975) is used

here, namely, that CT has a slow reaction time compared to one rotor revolution so that
the equilibrium values for Fz(x) are used in the integrand. With this approximation, the
following expression is then obtained for CT. The subscript e attached to a variable is used
in this paper to denote the equilibrium value for that variable.

6bccos 13i1CT ~--- Qwe dx.
y 0

(18)

This completes the formulation of the basic equations that are necessary to investigate
the dynamics of the rotor blade. The equilibrium response and the stability of the perturbed
motion about the equilibrium are investigated in the next section.

ANALYSIS OF THE MOTION

The boundary conditions for the rotor blade are extracted from eqn (7). The boundary
conditions at x = 0 correspond to [)a = 0, for a = u, v, IV, B" By and Bz • The boundary
conditions at x = 1are obtained by equating to zero the coefficients of the virtual variations
that appear in that equation. The boundary conditions are then as follows.
Atx = 0

At x = 1

C.; = Cry = C( = G" = 0

aBz • Maero(sin Bz ) tan Br
Gu=Maero~smB,,=- 1 .

uU' +eo

To integrate the equations of motion, we choose, for convenience, to use the first of
eqn (5) and the boundary conditions associated with Gu to obtain a second expression for
the quantity A that appears in that equation. This yields

__l_[iX d _ ~7ez _ .aey _ Maero(sin BJ tan ey]
). - 1 ' lu('1, r) '1 Ali. ~, Ae• '" , 1 .

+U I '(;U' uU +eo
(19)

When combined, the two expressions for A given by eqns (9) and (19) yield the
following relation that involves the elastic displacements u, v, IV and their temporal and
spatial partial derivatives.
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(20)

Equation (20) clearly discloses that eo -> 0 as EA -> 00 and, in the limit, the blade is
inextensional. For long beams and actual rotor blades, EA is a finite, but large, quantity
and, therefore, the blade will behave as essentially inextensional since, according to eqn
(20), eo is a very small quantity. Based on this observation, a simpler approximation to eqn
(20), which includes small terms only to the order of the blade's transverse deflections in
the numerator of eqn (20), will be used to account for the very small non-zero value of eo
in the calculations presented below. Therefore, for convenience, eo is approximated as
shown in eqn (21) below.

eo ~ ;A{f[~sin2fJ -2ucos fJ -xcos2 fJJdX}- (21)

In summary, the differential equations for the blade consist of the last three of eqn (5),
with Gv and Gw given by eqn (10) and eo approximated as shown in eqn (21).

A direct mathematical approach is now used here to analyze the motion of the blade.
First, the equilibrium solution for the system, for which the elastic deflections are not a
function of time (but only a function of the independent variable x), is determined directly
by numerical integration of the nonlinear ordinary differential equations that result from
eqn (5) with the cantilever boundary conditions. For this, it is convenient to write the
differential equations of motion in state variable form as

where r is a 15 x 1 column matrix of state variables whose components are defined as

II [x+u JY13 = Gv ;Y14 = Gw ;YI5 = x -2-sin2fJ-wsin2 fJ dx.

(22)

(23)

The integro-partial differential equations of motion developed here are, then, equivalent to
the following set of first-order nonlinear partial differential equations
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I Ys
Y7 = D~+(D~+D,)Y9

y~ = (D~-D,)C~C,-(j~-1()wnw,+J~w~-Qex

I Y2(sinfJ)cosfJ-xcos2 fJ-2j', cosfJ
Y9 = EA

+ (j~w~ T12 +hw~T22+J,w, T 32 ) sin fJ + (;~w~ T I3 +J~w~ T 23 +J,w,T33 )"

y'll = (I +Y9)[Y14 COSY4 - (Y13 sinY3 +YI2 COS.h) sinY4]

y '12 = Y6+Y2(sinfJ)cosfJ-(x+Y6)cos 2 fJ-2.v, cosfJ-Qu

y '13 = YI +2Y6 cos fJ-2Y2 sinfJ-Yl -Q"

y '14 = Y2 +2Yl sin fJ + (x+ Y6)(sin fJ) cos fJ - Y2 sin2 fJ - Qw

y '15 = Y2 sin 2 fJ - (x +Y6)(sin fJ) cos fJ· (24)

The boundary conditions for the state differential equations, eqn (24), are given below.
Since c < 1/10 for a typical rotor blade, the homogeneous approximation
G,,(x = 1, r = r) ~ 0 is used in order to simplify the integration of the equations. This is
done because M aero is proportional to yc2/96 < y/9600, which is less than 1/1000 for typical
values of y.

y;(O) = = 0 (i = 1,2, ... ,7)

Yi(l) = =0 (i=8,9, ... ,15).

(25)

(26)

Only the first 14 state variables appear in the right-hand side of the state differential
equations of motion. The state variable Y15 is introduced in the formulation with the sole
purpose of being able to express the rotor inflow ratio V j = J CT /2 as shown below.

From the last two equations of eqn (24) it follows that
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Y'14e +Y'l5e = - Qwe (27)

and this equation immediately yields

Since Y14e(1) = Y15e(1) = 0, the following expression is then obtained for the thrust
coefficient after eqns (18) and (28) are combined

6bc
CT = -[Y14e(0)+Y15e(0)]Cos{3.

y
(29)

Equation (29) provides a convenient way to calculate the inflow ratio Vi = J CT /2 during
the iteration process for finding the numerical solution to the state differential equations of
motion.

The state variable differential equations of motion admit the equilibrium solution
l' = l'e(x), The static equilibrium solution l'e(x) can be determined numerically by solving
the two-point boundary value problem governed by the resulting ordinary differential
equations l'~(x) = fC,!'e(x)). By perturbing the equilibrium solution as l'(x, r) =
l'e(x) +el's(x, r), where e is a "bookkeeping parameter" that is introduced only to keep track
of orders of magnitude, expanding the state equation in Taylor series about e = 0, and
truncating the expansion to O(e), a set oflinearized partial differential equations is obtained.
The solution to the linearized differential equations is of the form Y,(x, r) = F(x)e", where
r = O"± J'=lw is a complex quantity. The resulting linearized differential equations for the
14 components of the column matrix f(x) are of the form:

where the matrix A is equal to

F(x) = A(Ye(x) ; r)f(x) (30)

AC,!'e(x); r) = {[I-r ~~ _r2 ~~J-l} [:f +r :~+r2 :~l' (31)
ul' u,[ L=L' ul' ul' ul'~l'e

The solution to the linear matrix differential equation (30) for f.(x) is of the form

!(x) = <D(x)f(O) (32)

where <D(x) is a 14 x 14 matrix that, in linear system theory, is called the transition matrix
of the system. By substituting such solution into the differential equation for f(x), it is
readily seen that the transition matrix satisfies the matrix differential equation

d
d.~cJ)(x) = AC,!'e(x); r)<D(x) (33)

with the initial condition <D(O) = I, the 14xl4 identity matrix.
The eigenvalue r appears in the elements of the transition matrix <D as an unknown

parameter. Such parameter is determined by imposing the boundary conditions at x = 1 to
the function array f(x). To do this, it is convenient to partition f as:
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Table I. Parameter values for the plots
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c

n/40 0.01

"r

5

EA .I,

200 0 0.000625

where QI and fil are, respectively, 7 x I column matrices with Ql(O) = Qand fil(l) = Q. By
partitioning the transition matrix CI>(x) into four 7 x 7 submatrices, one can then write from
eqn (32):

(34)

Equation (34) discloses that the condition to have Qi1) = Q is that the determinant
of cJ)2.2(1) must be equal to zero. Such algebraic condition, which is the characteristic
equation associated with the equilibrium l:'e(x), then allows for the eigenvalue(s) r to be
determined. There is an infinite number of discrete values of r that satisfies the characteristic
equation. The numerical iterations that are necessary to determine the equilibrium solution
l:'e(x), and any desired number of eigenvalues r, were performed using FORTRAN IMSL
routines. The results obtained from such calculations are presented and discussed in the
next section.

RESULTS AND DISCUSSION

The parameter values that were used to plot the following figures are shown in Table
1. As indicated earlier, all the parameters are non-dimensional quantities. The plots are for
a rotor with b = 4 blades and with f3 = 0 (see Fig. 1).

The values that were used for the normalized stiffnesses D~ and D( are those that yield
the values of the uncoupled flap and lead-lag frequencies (w~, w~ shown in the figure
captions. The value used for the normalized torsional stiffness D~ corresponds to the
uncoupled torsional frequency w: = 2.5.

For the sake of completeness, it is worth mentioning how the differential equations of
motion for the uncoupled motions are obtained. The differential equations for the uncoupled
flap and lead-lag motions are, by definition of such motions, obtained by linearizing the
second and third of eqn (5) about v = w = ex = 0 and neglecting the small effect of the
distributed mass moments of inertia in the linearized equations. The differential equation
for the uncoupled torsional motion is, by definition of that motion, obtained by setting
v == w == 0 in the fourth of eqn (5), linearizing the resulting equation about ex = 0, and
using the approximation }ry = 0 (therefore, )( ==)~ +}~ = }~), which is an approximation
that is valid for a thin rotor blade. For these uncoupled linearized equations, f3 = 0 and
A~ EAeo ~(1-x2)/2 (as given by eqns 9 and 21). Very accurate analytical expressions
relating such frequencies to the blade's stiffnesses were developed in Peters (1973) using
asymptotic expansion methods. The expressions presented in Peters (1973) were used here
[and in Crespo da Silva and Hodges (1986b)] to obtain the values of the normalized
stiffnesses corresponding to typical values of the uncoupled frequencies used in the heli­
copter dynamics literature.
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Fig. 3. Flap equilibrium solution at the blade's tip vs w,' and Bo, for w~ = 1.05.
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Fig. 4. Lead-lag equilibrium solution at the blade's tip vs w,~ and Bo, for w~ = 1.05.

Figures 3-5 show three-dimensional plots of the static equilibrium solution (we> Ve and
cPe) at the blade's tip for w: = 1.05. The values obtained from the numerical integration of
the differential equations for the equilibrium correspond to the intersection of any two lines
on the surfaces shown in those figures. In those figures (and also in Fig. 6), such points
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Fig. 5. Torsion angle equilibrium solution at the blade's tip vs w,* and (in, for w: = ].05.

correspond to w: = 0.7,0.72, ... ,1.5, and to eo = 0, 0.05, ... , 0.45. As the value of the
collective pitch angle eo is increased, the aerodynamic lifting force increases and, as a
consequence, the blade's upward (i.e. in the i direction shown in Fig. 1) flap deflection We

increases. This is in agreement with the results shown in Fig. 3. As indicated in Figs 4 and
5, an increase in We is accompanied by an increase in the blade's lag deflection and by an
increase in the magnitude of the blade's angle of twist. Part of the equilibrium surfaces
shown in these figures are unstable, as indicated later.

The tip equilibrium solutions for the torsion angle ¢eo and for the flap deflection We,

are shown in Fig. 6 for a stiffer blade with w: = 1.4. The corresponding lag deflection
ve(x = 1) for the entire range of w: and eo shown in Fig. 6 is very small. Its maximum
magnitude for this stiffer blade is less than 0.03 radians and, for this reason, it is not shown.

Root loci for the first three pairs of eigenvalues r = (J ±J=lw associated with the
perturbed motion of the blade about its equilibrium are shown in the next three figures.
The arrows in each locus indicate how a particular eigenvalue moves in the first and second
quadrants of the complex r plane as w,* is changed, with a step equal to 0.02, from
w: = 0.7 to w: = 1.5 for a particular value of eo. Each dot in a locus shown in these figures
corresponds to an eigenvalue for a particular value of collective pitch eo, and for a value
of w: in the range indicated above and in the figures.

Figure 7 shows the root locus of 0.7::'::; w:::,::; 1.5, with eo = 0.35 and w: = 1.05.
Although the flap and lead-lag motions are coupled, the eigenvalue with the lowest imagin­
ary part w in that figure is the one that essentially dominates the lightly damped lead-lag v­
motion. The eigenvalue that corresponds to the highest frequency in that figure is essentially
the one that dominates the torsional motion of the blade. Note that, for the value of eo
indicated in the caption for Fig. 7, the real part of one of the eigenvalues becomes positive
when w: reaches a value somewhere between 1.4 and 1.42. When this happens, the equi­
librium solution that corresponds to the associated values of the parameters eo and W,~ is,
of course, unstable. Otherwise, points on the surfaces shown in Figs 3-5 are asymptotically
stable.

The root locus for several values of eo changing with a step equal to 0.05 in the range
0::,::; eo ::,::; 0.30, and for w:changing with a step equal to 0.02 in the range 0.7::'::; w:::,::; 1.5, is
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shown in Fig. 8 for w~ = 1.05. All the equilibrium points that correspond to each dot in
that figure correspond to an asymptotically stable equilibrium since the real parts of the
eigenvalues are negative. Comparing Figs 7 and 8, it is seen that for w~ = 1.5, for example,
the blade's equilibrium solution becomes unstable when the collective pitch of all four
blades of the helicopter is increased beyond a value that is somewhere between 0.3 and
0.35, but very close to eo = 0.3 (i.e. about 18°).

Root loci associated with the equilibrium solution shown in Fig. 6 for w~ = 1.4 are
plotted in Fig. 9 for eo = 0 and eo = 0.4, and for w,'!' changing in the range O.7 ~ w~ ~ 1.5
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with a step equal to 0.02. For eo = 0, two of the root loci shown in that figure are curves
clustered around the points -0.358+ 1.4)-I and -0.324+2.374F1. For eo = 0.4,
those two eigenvalues that were in the clustered loci move in the directions shown by the
arrows as w,* is increased from 0.7 to 1.5.

CONCLUDING REMARKS

An analysis methodology that is applicable to all dynamical systems was used to
investigate the motion of a helicopter rotor blade. First, the equilibrium solution to the
system was obtained by the numerical integration of the nonlinear differential equations of
motion. Therefore, the equilibrium solution obtained here could be labeled "numerically
exact". By casting the partial differential equations in the form.1( = [(}:, p., ji, P", Jr), one can
determine, with no major difficulty, the mode shapes and the eigenvalues associated with
the infinitesimally small perturbations about the equilibrium solution. A substantial amount
of data was generated using this methodology, and a number of results were presented in
the form of plots showing how the equilibrium solution and the root loci depend on several
parameters for the problem that was analyzed.

Approximate results for a similar rotor blade were presented in Crespo da Silva and
Hodges (l986b) using expanded equations. When compared to the results obtained here,
it is not uncommon to find differences of 20%, for the higher values of collective pitch,
between some of those approximate results and the results obtained here. It would be highly
desirable if one would, in the future, generate experimental data with the objective of
comparing it with the results of the theoretical analysis presented in this paper.

As in other work presented in the rotorcraft literature, the investigation presented here
used a simple model for the aerodynamics. It is suggested that further extension of this
work make use of more accurate and more realistic aerodynamic models.

It is now well-known that nonlinearities in the differential equations of motion may
affect the system dynamics in such way that the actual motion of the system may be
quite different from the "linearized motion". This may happen when the system natural
frequencies W; are related as Im\wl +m2w2 +m,w3+ ... 1 :::::: 0, where the m;s are integers.
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This phenomenon, which is called "nonlinear resonance", was not addressed here. The root
loci presented here disclose a number of possibilities for nonlinear resonances in the motion
ofa helicopter rotor blade. For example, for w~ = 1.05 and eo = 0.15, two of the eigenvalues
associated with the linearized motion arc approximately equal to -0.2325+ 1.017j=1
and - 0.1071 + 1.009j=1 when w~ = 1.02 (see Fig. 8). Since the frequency ratio for these
two eigenvalues is nearly equal to I : I, these modes will likely cause the system to exhibit
a nonlinear resonant motion. As disclosed by Figs 8 and 9, the system also exhibits other
nonlinear resonances, such as 2: I resonances. To this author's knowledge, neither the
importance nor the analysis of such resonant motions, have been addressed in the rotorcraft
literature. Since nonlinear resonant motions can be drastically different from the motion
predicted by linearization [see, for example, Crespo da Silva and Glynn (l978b); Crespo
da Silva and Zaretzky (1994); Zaretzky and Crespo da Silva (I994a, 1994b)], it would be
of interest to investigate them analytically and to reinforce such investigations with a set of
carefully done experiments with a helicopter rotor. For forward flight, additional resonances
caused by the presence of periodic coefficient terms in the differential equations of motion
can also be the source of undesirable responses that are not predicted by linearization.
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